skip to main content


Search for: All records

Creators/Authors contains: "Chen, Xiaolong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability. 
    more » « less
  3. null (Ed.)
    Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia. 
    more » « less
  4. Abstract

    Recent years have witnessed the rapidly growing interests in the rediscovered black phosphorus (BP), an elemental group‐V layered material with very high carrier mobility among all semiconducting layered materials. As a layered semiconductor, the bandgap of intrinsic BP varies from ≈0.3 to 2 eV depending on the thickness. This bandgap value can be tuned to below 50 meV by a moderate external electric field. Adsorption doping and external pressure can also effectively modify its bandgap. The largely tunable bandgap of BP makes it a promising material for infrared optics. Moreover, its unique puckered structure leads to the anisotropic in‐plane properties, making it ideal for the exploration of exotic physical phenomena and the realization of novel devices. Here, the fundamental optical properties are reviewed and latest developments on BP photonic and optoelectronic devices are discussed.

     
    more » « less
  5. Abstract

    Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high‐quality few‐layer and thin‐film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin‐film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field‐effect mobility of the synthesized BP thin film is found to be around 160 cm2V−1s−1along armchair direction and reaches up to about 200 cm2V−1s−1at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high‐quality BP devices and circuits.

     
    more » « less